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Abstract: We describe various aspects of solving elliptic boundary value problems on overlapping grids.
We describe the Overlapping-Grid-MultiGrid-solver, Ogmg, that can be used to obtain solutions to
elliptic boundary value problems. Ogmg solves problems in two and three space dimensions on
composite overlapping grids. Second and fourth-order accurate approximations are supported. Given an
overlapping grid generated from the Ogen grid generator, Ogmg will generate the coarse grid multigrid
levels using an automatic coarsening algorithm. The equations on the coarse grids can be determined
automatically using a Galerkin averaging procedure. The multigrid solution algorithm has been
optimised for some commonly occuring problems such as equations defined with the Laplace operator.
Smoothers include Red-Black, Jacobi, Gauss-Seidel, line-zebra and line-Jacobi. Ogmg is particularly
efficient when a majority of the grid points belong to cartesian component grids; this is often the case
when grids become sufficiently fine. The fourth-order accurate approximations are solved directly with
multigrid (as opposed to using a defect correction scheme). Convergence rates for the fourth-order
approximations are often nearly as good as the convergence rates for second-order discretizations.
Currently only scalar elliptic boundary value problems can be solved.
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1 Introduction

Ogmg is a multigrid solver for use with Overture [2],[3]. Ogmg can solve scalar elliptic problems
on overlapping grids. It has a variety of smoothers including Red-Black, Jacobi, Gauss-Seidel and line
smoothers. Second-order accurate and fourth-order accurate approximations are supported. A sparse
direct or sparse iterative solver such as GMRES can be used to solve the coarse grid equations – the
Overture solver Oges is used for this purpose, thus allowing access to a variety of sparse matrix solvers
such as those available with PETSc[1].

In the case of a general elliptic boundary value problem, the system of equations that Ogmg solves
are specified as a “coefficient-array” grid function. The coefficient array can be created using the Overture
operator classes.

Ogmg has been specifically optimised for a class of commonly occuring problems. These predefined
equations are

∆u = f laplaceEquation

∇ · (s(x)∇)u = f divScalarGradOperator

(I + c0∆)u = f heatEquationOperator

(I + s(x)∆)u = f variableHeatEquationOperator

(I +∇ · (s(x)∇))u = f divScalarGradHeatEquationOperator

These equations are augmented with Dirichlet, Neumann or mixed boundary conditions. The above equa-
tions can be solved more quickly and with less storage than if the same equation had been defined through
a general coefficient matrix.

Ogmg starts with an overlapping grid constructured with the overlapping grid generator Ogen. The
coarse grids needed by the multigrid algorithm are automatically generated with a new coarsening algo-
rithm. Very coarse grids can be formed by relaxing the accuracy requirements for interpolation on the
coarser grids and allowing the overlap between grids to grow as the grids are coarsened.

The discrete approximations to the equations on the coarse grids are determined automatically using a
Galerkin averaging procedure from finer grids.

An adaptive smoothing algorithm is used to improve the convergence rate. The number of sub-smooths
performed on each component grid is adjusted to keep the residuals nearly the same.

Good multigrid convergence rates are usually obtained. Ogmg is particularly efficient when a majority
of the grid points belong to cartesian component grids; this is often the case when grids become sufficiently
fine. The overall convergence rates has been significanty improved from the original fortran version of the
code [5]. Some of the factors that led to this improved performance were

• an adaptive smoothing algorithm that performs additional sub-smooths on component grids that are
converging slowly.

• generating the coarse grid equations through operator averaging improves the convergence rate.

• careful attention to boundary conditions (especially for Neumann boundary conditions and fourth-
order accurate discretzations) can improve the convergence rate.

• using over-relaxation for Red-Black smoothers is very helpful, especially in 3D.

Ogmg does not yet efficiently handle the case of singular problems such as a Poisson equation with
all Neumann boundary conditions; in this case one must first determine the left null vector to the discrete
operator.
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2 The multigrid algorithm for overlapping grids

Ogmg uses the standard defect correction algorithm. The implementation on overlapping grids is relatively
straight-forward. See the paper [5] for further discussion.

• Typically Jacobi, red-black or line (zebra) smoothers are used.

• The fine to coarse Restriction operator is the full weighting operator except at boundaries.

• The coarse to fine Prolongation operator is second or fourth order interpolation; second-order by
default.

• The cycle chosen is either adaptive or can be fixed to a desired one.

while not converged do
smooth ν1 times or until the smoothing rate > η

v1 ← Sν1v1

form the defect and transfer to the coarser grid
f2 ← R1→2(f − Av1)

“solve” the defect equation (at least to an “accuracy” of δ)
A2v2 ≈ f2

correct the fine grid solution from the coarse grid solution
v1 ← v1 + P 2→1v2

smooth ν2 times or until the smoothing rate > η
v1 ← Sν2v1

end while

The smoothing step represented by the operator S is a composite-smooth where each grid in turn is
smoothed:

for each grid g in a CompositeGrid do
smooth grid g νg times
interpolate

end for

The smoother and the number of smooths may vary from component grid to component grid. We try to
choose ng, the number of smooths on each component grid, so that the residual stays about the same size
on each component grid. The approximate rule we use is that

ng ≈
‖ residual on grid g‖

ming ‖residual on grid g‖

The grid with the smallest residual will have ng = 1.

3 Black box multigrid features

A new feature of Ogmg is the ability to take a problem defined on a CompositeGrid with only one level and
to automatically generate the information for coarser levels. There are two key ingredients to making this
work. The first is that we need to generate the coarse grid coefficient matrices automatically. The second
is to handle interpolation points on the coarse grid which may or may not sit on interpolation points on the
fine grid.
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3.1 Automatic coarsening algorithms

3.2 Operator averaging

To generate a coarse grid operator from a fine grid operator we can average the operator on the fine grid
and then restrict the result to the coarse grid.

Consider a 3 point stencil operator in one dimension. If we look at the stencil for rows i − 1, i, i + 1
arranged in a matrix then we get

ai−1ui−2 bi−1ui−1 ci−1ui 0 0
0 aiui−1 biui ciui+1 0
0 0 ai+1ui bi+1ui+1 ci+1ui+2

If we replace row i by the weighted average of rows i − 1, i, i + 1 with weights α, β, α then we get the
wide stencil

αai−1ui−2 (αbi−1 + βai)ui−1 (α(ci−1 + ai+1) + βbi)ui (αbi+1 + βci)ui−1 αci+1ui+2

If we distribute the values at point i − 1 using ui−1 = 1

2
(ui−2 + ui) and at point i + 1 using ui+1 =

1

2
(ui+2 + ui) then we have a wide stencil only defined at points i− 2, i, i + 2.

(α(ai−1 + 1

2
bi−1) + 1

2
βai)ui−2 (α(1

2
bi−1 + 1

2
bi+1 + ci−1 + ai+1) + β(bi + 1

2
ai + 1

2
ci))ui (α(ci+1

1

2
bi+1) + 1

2
βci)ui+2

Typically we take α = γ = 1/4, and β = 1/2. In more than one space dimension we can apply the
above averaging procedure sequentially in each direction.

Now consider a 5 point operator (we could also average 5 adjacent equations rather then 3)

ai−1ui−3 bi−1ui−2 ci−1ui−1 di−1ui ei−1ui+1 0 0
0 aiui−2 biui−1 ciui diui+1 eiui+2 0
0 0 ai+1ui−1 bi+1ui ci+1ui+1 di+1ui+2 ei+1ui+3

Averaging in a similar fashion we obtain a coarse grid operator

ac
iui−2 bc

iui−1 cc
iui dc

iui+1 ec
iui+2

where

ac
i =

1

2
αai−1

bc
i = αbi−1 + βai +

1

2
αai−1 +

1

2
(αci−1 + βbi + αai+1)

cc
i = αdi−1 + βci + αbi+1 +

1

2
(αci−1 + βbi + αai+1) +

1

2
(αei−1 + βdi + αci+1)

dc
i = αdi+1 + βei +

1

2
(αei−1 + βdi + αci+1) +

1

2
αei+1

ec
i =

1

2
αei+1
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3.2.1 Operator averaging at boundaries

At a boundary we will typically have a boundary condition such as a dirichlet, neumann or mixed boundary
condition. We need to decide how to average near the boundary and on the boundary or ghost line.

Ogmg is aware of two types of boundary conditions. These ’boundary conditions’ actually just in-
dicate how the ghost line should be updated. The condition extrapolation indicates the ghost line
is extrapolated and usually means that a dirichlet boundary condition is applied on the boundary. The
equation boundary condition indicates that some equation is applied on the ghost line; this is usually
associated with a neumann or mixed boundary condition.

dirichlet : In this case we just impose a dirichlet BC in the coarse grid operator.

neumann : (or neumann like condition) coarse grid operator. The coarse grid operator is obtained by
distributing the fine grid ghost line equation to the coarser grid but not averaged in the tangential
direction.

(α(ai + 1

2
bi) + 1

2
βai)ui−2 (α(bi + ci + ai) + β(bi + 1

2
ai + 1

2
ci))ui (α(ci + 1

2
bi) + 1

2
βci)ui+2

extrapolation : coarse grid operator is also extrapolation.

equation : ghost line has some equation on it. The coarse grid operator is obtained by averaging the
ghostline equations (i.e. averaging is only done in the tangential directions).

Remark: The coarse grid matrix A2 can also be defined from the fine grid matrix A1 using the prolo-
gation and restriction operators

A2 = RA1P

The first step above where the rows were combined corresponds to premultiplying A1 by R. The second
step where the values at points i + 1 and i + 1 were removed corresponds to the post-multiplication by P .

Tables (1-2) compare the convergence results for Poisson’s equation with dirichlet boundary conditions
when using operator averaging to construct the coarse grid equations to no operator averaging. The nota-
tion used to label the columns in defined at the start of section ??. In this example the operator-averaged
case is significantly better. There was a negligible difference in CPU times between the two cases.

With Operator Averaging
i res rate WU ECR
1 1.4e + 02 0.036 5.0 0.52
2 3.4e + 00 0.024 5.0 0.48
3 9.3e− 02 0.027 5.0 0.49
4 2.5e− 03 0.027 5.0 0.49
5 7.1e− 05 0.028 5.0 0.49
6 2.0e− 06 0.029 5.0 0.49
7 5.9e− 08 0.029 5.0 0.50

Without Operator Averaging
i res rate WU ECR
1 2.3e + 02 0.054 5.0 0.56
2 9.4e + 00 0.041 5.0 0.53
3 5.2e− 01 0.055 5.0 0.56
4 2.9e− 02 0.056 5.0 0.57
5 1.7e− 03 0.058 5.0 0.57
6 1.1e− 04 0.065 5.0 0.58
7 7.4e− 06 0.067 5.0 0.58

Table 1: Second-order accuracy. Left: operator averaging. Right: no operator averaging. Multigrid
convergence rates, 5 levels, smoother rb[2,1]. Grid square256, trigonometric solution.
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Figure 1: The convergence rate is improved when the coarse grid operators are generated with operator
averaging. Results are shown for a V[2,1] cycle.
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With Operator Averaging
i res rate WU ECR
1 3.0e + 02 0.048 5.1 0.55
2 1.4e + 01 0.046 5.1 0.54
3 7.0e− 01 0.051 5.1 0.55
4 3.6e− 02 0.051 5.1 0.56
5 1.9e− 03 0.052 5.1 0.56
6 9.7e− 05 0.052 5.1 0.56
7 5.1e− 06 0.053 5.1 0.56

Without Operator Averaging
i res rate WU ECR
1 9.4e + 02 0.111 5.1 0.65
2 8.8e + 01 0.094 5.1 0.63
3 9.8e + 00 0.111 5.1 0.65
4 1.2e + 00 0.120 5.1 0.66
5 1.4e− 01 0.122 5.1 0.66
6 1.8e− 02 0.124 5.1 0.66
7 2.2e− 03 0.126 5.1 0.66

Table 2: Fourth-order accuracy. Left: operator averaging. Right: no operator averaging. Multigrid
convergence rates, 5 levels, smoother rb[2,1]. Grid square256.order4, trigonometric solution.

4 Smoothing overlapping grids

There are a few issues that must be addressed when smoothing an overlapping grid. Some care must be
taken to ensure that the composite-smooth operator (a smoothing step over all component grids) retains
similiar smoothing rates to that of a smoother for a single component grid. The underlying principle
for smoothing an overlapping grid is that the defect after smoothing should be smooth enough to be
represented on the next coarser levels.
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